SOME LOCALLY CONVEX SPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS OVER A COMPLETELY REGULAR SPACE AND THEIR DUALS

BY

A. KATSARAS

ABSTRACT. The strict, superstrict and the β_F topologies are defined on a space A of continuous functions from a completely regular space into a Banach space E. Properties of these topologies are discussed and the corresponding dual spaces are identified with certain spaces of operator-valued measures. In case E is a Banach lattice, A becomes a lattice under the pointwise ordering and the strict and superstrict duals of A coincide with the spaces of all τ -additive and all σ -additive functionals on A respectively.

Introduction. The Riesz representation theorem says that any continuous linear functional F on the space of continuous real functions on a compact Hausdorff space X with the uniform topology must have the form $F(f) = \int_X f \, dm$ for some bounded regular Borel measure on X. This representation was extended later to other spaces, first in case X is locally compact and later by Aleksandrov [1] for continuous linear functionals on the space $C^b(X)$ of all bounded continuous real functions on a completely regular space. The representation was given by means of integrals with respect to members of the space M(X) of all bounded, finitely-additive, regular with respect to zero sets, measures on the algebra generated by the zero sets. The σ -additive, τ -additive and tight linear functionals correspond to the σ -additive, τ -additive and tight members of M(X) respectively (see Varadarajan [24]). Buck [4], for the locally compact case, and Sentilles [23], for the completely regular case, have defined the strict topologies on $C^b(X)$ which yield as dual spaces certain subspaces of M(X). Several others like Hewitt [10], Bogdanowich [2], Wells [25], the author [12] and others have considered the problem of representation of linear functionals on spaces of continuous scalarvalued or vector-valued functions. In this paper we define certain locally convex topologies on spaces of continuous vector-valued functions on a completely regular space. We study some of the properties of these topologies and represent their duals with operator-valued measures on certain σ -algebras of subsets of X. The

Received by the editors December 20, 1972 and, in revised form, April 15, 1975.

AMS (MOS) subject classifications (1970). Primary 46E40; Secondary 46A05, 46A40.

Key words and phrases. Locally convex spaces, strict topology, mixed topology, operator-valued measures, σ -additive functionals, τ -additive functionals.

integration process employed is a generalization of the process of Aleksandrov to the vector case. It is one of the many integration processes defined by McShane [17].

1. Definition and notation. Throughout this paper X will denote a completely regular Hausdorff space and Y will be a Hausdorff compactification of X. We will denote by B the algebra of continuous real-valued functions f on X which have continuous extensions \hat{f} to all of Y. Let E be a Banach space over the real field. We will denote by A the space of all continuous functions f from X into E which have continuous extensions \hat{f} to all of Y. Let $C = \{\hat{f} : f \in A\}$. If $f \in A$ and $g \in B$, the function gf is defined on X by (gf)(x) = g(x)f(x). For $s \in E$ we will denote also by s the element of A whose value at every x is equal to s.

We will consider on A various locally convex topologies.

(a) The uniform topology σ generated by the norm

$$f \longrightarrow ||f|| = \sup \{||f(x)|| : x \in X\}.$$

(b) The topology k generated by the family seminorms p_K , K compact in X, where

$$p_K(f) = ||f||_K = \sup\{||f(x)||: x \in K\}.$$

(c) The topology π generated by the family of seminorms P_x , $x \in X$, where

$$p_x(f) = \|f(x)\|.$$

Clearly all topologies π , k, σ are Hausdorff and $\pi \le k \le \sigma$. Finally, if τ is a linear topology on A, then $(A, \tau)'$ denotes the topological dual of (A, τ) .

2. The strict and superstrict topologies on A. Buck [4] defined the strict topology on the space of bounded continuous functions on a locally compact Hausdorff space. This topology has been studied later by several other authors. Recently Sentilles [23] defined the strict and superstrict topologies on the family of all bounded, continuous, real-valued functions on a completely regular Hausdorff space. In this section we will define the strict and superstrict topologies on the space A defined in §1. Our approach will be analogous to that of Sentilles. Several of our theorems will be generalizations of his results.

A subset Z of Y is called a zero set if $Z=f^{-1}\{0\}$ for some continuous real function f on Y. We will denote by Ω (Ω_1) the class of all closed (zero) subsets of Y which are disjoint from X. For a Q in Ω , let $B_Q=\{f\in B: \hat{f}=0 \text{ on } Q\}$. It is not hard to see that B_Q is a Banach algebra (under the uniform norm) with an approximate identy of norm ≤ 1 .

Let $Q \in \Omega$. We will denote by β_Q the locally convex topology on A generated by the family of seminorms $f \to \|gf\|$, $g \in B_Q$. The space (A, σ) is a Banach space and a B_Q -module since $gf \in A$ for every $g \in B_Q$ and every $f \in A$. The topology β_Q is the strict topology on A as defined by Sentilles [20]. Hence

 β_Q is the finest locally convex topology on A which agrees with β_Q on norm bounded subsets of A by Sentilles [21, Theorem 2.2]. A convex balanced absorbent set W in A is a β_Q -neighborhood of zero iff given r>0 there exists a β_Q -neighborhood V of zero such that $U_r \cap V \subset W$, where $U_r = \{f \in A : ||f|| \le r\}$.

The strict topology $\beta = \beta(A)$ on A is defined to be the inductive limit of the topologies β_Q , $Q \in \Omega$. The superstrict topology β_1 is the inductive limit of the topologies β_Z , $Z \in \Omega_1$. By definition of the inductive limit topology (see Schaefer [19, p. 57]), a convex balanced absorbent subset W of A is a β (β_1) neighborhood of zero iff W is a β_Q -neighborhood of zero for each $Q \in \Omega$ ($Q \in \Omega_1$).

Theorem 2.1.
$$k \leq \beta \leq \beta_1 \leq \sigma$$
.

PROOF. It is clear that $\beta \leqslant \beta_1 \leqslant \sigma$. To prove that $k \leqslant \beta$ consider an arbitrary compact set K in X. We want to show that the set $W = \{f \in A : \|f\|_K \leqslant 1\}$ is a β -neighborhood of zero. Since W is convex balanced and absorbent it suffices to show that W is a β_Q -neighborhood of zero for every Q in Ω . So, let $Q \in \Omega$. Since K is compact, there exists $g \in B$ such that g = 1 on K and $\hat{g} = 0$ on Q. Then $g \in B_Q$ and $V = \{f \in A : \|gf\| \leqslant 1\} \subset W$. Since V is a β_Q -neighborhood of zero the result follows.

Since, for each $Q \in \Omega$, β_Q is the finest locally convex topology on A which agrees with β_Q on norm bounded subsets of A, it follows that β (β_1) is the finest locally convex topology τ on A which agrees with β (β_1) on norm bounded sets.

LEMMA 2.2. Let π be a locally convex topology on A such that $\pi \leq \tau \leq \sigma$ and such that $(A, \tau)' = H$ is a norm closed subspace of $A' = (A, \sigma)'$. Then τ and σ have the same bounded sets.

PROOF. Every σ -bounded set is obviously τ -bounded. On the other hand, suppose that G is a τ -bounded subset of A. Then G is $\sigma(A, H)$ bounded. By our hypothesis H is a Banach space under the norm

$$\phi \to \|\phi\| = \sup\{|\phi(f)|: f \in A, \|f\| \le 1\}.$$

Each $f \in A$ defines a bounded linear functional T_f on H by $T_f(\phi) = \phi(f)$. Since G is $\sigma(A, H)$ bounded, we have $\sup\{|T_f(\phi)|: f \in G\} < \infty$ for each $\phi \in H$. By the principle of uniform boundedness there exists K > 0 such that $\sup\{\|T_f\|: f \in G\} \le K$. Let now $f \in G$ and $x \in X$. By the Hahn-Banach theorem there is a T in E', $\|T\| \le 1$, $T(f(x)) = \|f(x)\|$. Define $\pi_x : A \to R$, $\pi_x(g) = T(g(x))$. Then π_x is in H since $\pi_x \in (A, \pi)' \subset H$. Moreover $\|\pi_x\| \le 1$. Thus $\|f(x)\| = \pi_x(f) = T_f(\pi_x) \le K$. It follows that $\sup\{\|f\|: f \in G\} \le K$ which completes the proof.

THEOREM 2.3. Let τ be as in Lemma 2.2. The following are equivalent:

- (1) $\tau = \sigma$.
- (2) τ is normable.

- (3) τ is metrizable.
- (4) τ is bornological.
- (5) τ is barrelled.

PROOF. It is clear that (1) implies (2), (2) implies (3), and (3) implies (4). To prove that (4) implies (5), we first observe that the set $U_1 = \{f \in A : \|f\| \le 1\}$ is convex balanced and absorbs every norm (and hence every τ) bounded set. By (4) U_1 is a τ -neighborhood of zero. It follows that $\tau = \sigma$. Since (A, σ) is a Banach space, (5) follows. Finally to prove that (5) implies (1) we observe that the set U_1 is π -closed and hence τ -closed. Since U_1 is also convex balanced and absorbent it follows that U_1 is a τ -neighborhood of zero and hence $\tau = \sigma$.

THEOREM 2.4. The duals of the spaces (A, β) and (A, β_1) are norm closed subspaces of the dual of (A, σ) .

PROOF. Let $\{T_n\}$ be a sequence in $(A, \beta)'$. $T \in A'$, such that $\|T_n - T\| \to 0$. Let $W = \{f \in A : |T(f)| \le 1\}$. We need to show that W is a β -neighborhood of zero. Since W is convex balanced and absorbent it suffices to show that given r > 0 there exists a β -neighborhood V of zero such that $V \cap \{f \in A : \|f\| \le r\} \subset W$. So, let r > 0. Choose n so that $\|T_n - T\| < 1/(2r)$. Let $V = \{f \in A : \|T_n(f)\| < \frac{1}{2}\}$. Then V is a β -neighborhood of zero and $V \cap \{f \in A : \|f\| \le r\}$ $\subset W$. This proves the result for β . The proof for β_1 is similar.

COROLLARY 2.5. (a) Theorem 2.3 holds for $\tau = \beta$ or β_1 .

(b) β , β_1 and σ have the same bounded sets.

THEOREM 2.6. The topologies β and σ coincide iff X is compact.

PROOF. Clearly $\beta = \sigma$ when X is compact. On the other hand assume that X is not compact. Then $Y \neq X$. Let $x \in Y - X$, $Q = \{x\}$. Let $g \in B_Q$ and set $V = \{f \in A : \|gf\| \le 1\}$. Choose $s \in E$, $\|s\| = 2$ and set $F = \{y \in Y : |\hat{g}(y)| \ge \frac{1}{2}\}$. There exists $h \in B$, $0 \le h \le 1$, such that $\hat{h} = 0$ on F and $\hat{h}(x) = 1$. Then the function f = hs is in V but not in $U_1 = \{f \in A : \|f\| \le 1\}$. Hence U_1 does not contain V. It follows that U_1 is not a β_Q -neighborhood of zero and hence $\beta \neq \sigma$.

- 3. The topology β_F . Let F be a collection of compact subsets of X satisfying the following two conditions:
 - (1) $\bigcup F = X$.
- (2) F is directed, i.e. given G_1 , G_2 in F there exists G in F containing both G_1 and G_2 . We denote by τ_F the locally convex topology on A generated by the family of seminorms $\{\|\cdot\|_G: G\in F\}$, where $\|f\|_G=\sup\{\|f(x)\|:x\in G\}$. The topology $\beta_F=\beta_F(A)$ is defined to be the mixed topology $\gamma[\sigma,\tau_F]$ as defined by Wiweger [26]. By Wiweger we have $\tau_F\leqslant\beta_F\leqslant\sigma$ and that β_F is the finest locally

convex topology on A which agrees with τ_F on each norm bounded subset of A (see Wiweger [26, 2.2.2.]).

LEMMA 3.1. Let G_1, \ldots, G_n be in $F, \epsilon > 0$ and f in A. Then there exist g, h in A such that f = g + h, h = 0 on each G_i , and $||g|| \le \epsilon + \max\{||f||_{G_i}: 1 \le i \le n\}$.

PROOF. Let $G = \bigcup G_i$ and set $d = \epsilon + \|f\|_G$. Then $G \subset V = \{x \in Y : |\hat{f}(x)| < d\}$. Since G is compact and V open there exists $h_0 \in B$, $0 \le h_0 \le 1$, $\hat{h}_0 = 1$ on G, $\hat{h}_0 = 0$ on Y - V. Set $g = fh_0$ and $h = f(1 - h_0)$. Then g and h satisfy the requirements.

COROLLARY 3.2. The sets of the form $\bigcap_{i=1}^{\infty} \{f \in A : ||f||_{G_i} \leq a_i\}$, where $0 < a_i \to \infty$ and $G_i \in F$, constitute a β_F -neighborhood base at zero.

PROOF. It follows from the preceding lemma and from Wiweger's Theorem 3.1.1.

We will next give an alternative description of β_F . Denote by $B_0(F)$ the collection of all bounded real-valued functions f on X with the property that given $\epsilon > 0$ there exists G in F such that $\{x \in X : |f(x)| \ge \epsilon\} \subset G$. We define on A the locally convex topology $\tau(F)$ generated by the family of seminorms P_g , $g \in B_0(F)$, where

$$P_{\sigma}(f) = ||gf|| = \sup\{||g(x)f(x)|| : x \in X\}.$$

Lemma 3.3. The topologies $\tau(F)$ and τ_F coincide on each σ -bounded subset of the space A.

PROOF. Let r>0 and set $U_r=\{f\in A:\|f\|\leqslant r\}$. Suppose that V is a subset of U_r which is closed with respect to the relative topology of $\tau(F)$ on U_r . We will show that V is closed with respect to the τ_F relative topology on U_r . Indeed, let $f\in U_r$ be in the τ_F closure of V. Let $g\in B_0(F)$. Given $\epsilon>0$ there exists G in F such that $|g(x)|<\epsilon/(2r)$ if x is not in G. Choose h in V with $\|f-h\|_G<\epsilon/\|g\|$. Then $\|g(f-h)\|\leqslant\epsilon$. This proves that f is in the $\tau(F)$ closure of V and hence in V. It follows that $\tau(F)|_{U_r}\leqslant\tau_F|_{U_r}$. On the other hand $\tau_F\leqslant\tau(F)$ because the characteristic function of any set in F belongs to $B_0(F)$. We conclude that $\tau(F)$ and τ_F agree on U_r . The result follows.

THEOREM 3.4. The topologies $\tau(F)$ and β_F coincide.

PROOF. Since β_F is the finest locally convex topology on A which agrees with τ_F on norm bounded subsets of A, we have $\tau(F) \leq \beta_F$ by 3.3. On the other hand, let $W = \bigcap_{i=1}^{\infty} \{f \in A : \|f\|_{G_i} \leq a_i\}$ where $0 < a_i \longrightarrow \infty$ and $G_i \in F$. Define $g = \sup_i a_i^{-1} \chi_{G_i}$ (χ_{G_i} is the characteristic function of G_i). Then $g \in B_0(F)$. Moreover, $\{h \in A : \|gh\| \leq 1\} \subset W$. Hence W is a $\tau(F)$ -neighborhood of zero. Now Corollary 3.2 completes the proof.

THEOREM 3.5. The topology β_F is weaker than β .

PROOF. Let W be a convex balanced absorbent β_F -neighborhood of zero. Let $Q \in \Omega$ and r > 0. Since β_F coincides with τ_F on U_r there exist G in F and $\delta > 0$ such that $0 = \{f \in A : \|f\|_G \leqslant \delta\} \cap U_r \subset W$. Choose $g \in B_Q$, $0 \leqslant g \leqslant 1, g = 1$ on G. Then $V \cap U_r \subset W$, where $V = \{f \in A : \|gf\| \leqslant \delta\}$. This proves that W is a β_Q -neighborhood of zero for each Q in Ω . The theorem is proved.

We will next identify the space $(A, \beta_F)'$. Let $L_F(A)$ denote the collection of all linear functionals T in A' such that $T(f_\alpha) \to 0$ whenever $\{f_\alpha\}$ is a net in U_1 that converges to zero uniformly on each $G \in F$. We omit the proof of the following easily established

LEMMA 3.6. $L_E(A)$ is a norm closed subspace of A'.

LEMMA 3.7. Let $\phi \in (A, \sigma)'$. Then ϕ is in $L_F(A)$ iff for each $\epsilon > 0$ there exist G in F and $\delta > 0$ such that $|\phi(f)| \leq \epsilon$ for all $f \in A$ with $||f|| \leq 1$ and $||f||_G \leq \delta$.

PROOF. The necessity of this condition is clear. To prove the sufficiency assume, by way of contradiction, that there exists $\epsilon>0$ such that for each $G\in F$ and each $\delta>0$ there exists $f=f_{(G,\delta)}$ in A, with $\|f\|\leqslant 1$ and $\|f\|_G\leqslant \delta$, such that $|\phi(f)|>\epsilon$. For $\alpha_1=(G_1,\delta_1), \alpha_2=(G_2,\delta_2)$ we write $\alpha_1\geqslant \alpha_2$ iff $G_1\supset G_2$ and $\delta_1\leqslant \delta_2$. In that way we get a net $\{f_\alpha\}$ in U_1 . Moreover, $f_\alpha\longrightarrow 0$ uniformly on each $G\in F$. Since $|\phi(f_\alpha)|>\epsilon$ for all α we arrive at a contradiction.

THEOREM 3.8. The topological dual of the space (A, β_F) is the space $L_F(A)$.

PROOF. Let $\phi \in L_F(A)$. Set $W = \{f \in A : |\phi(f)| \le 1\}$. If r > 0, there exist $G \in F$ and $\delta > 0$ such that $|\phi(f)| \le 1/r$ whenever $||f|| \le 1$, $||f||_G \le \delta$. Let $V = \{f \in A : ||f||_G \le \delta r\}$. Then V is a τ_F -neighborhood of zero and $V \cap U_r \subset W$. This shows that W is a β_F -neighborhood of zero in view of the fact that β_F is the finest locally convex topology on A which agrees with τ_F on norm bounded subsets of A. It follows that ϕ is β_F -continuous. Conversely, assume that ϕ is in $(A, \beta_F)'$ and let $\epsilon > 0$. There exist G in F and $\delta > 0$ such that

$$\{f \in A : \|f\|_G \leq \delta\} \cap U_{1/\epsilon} \subset \{f \in A : |\phi(f)| \leq 1\}.$$

Thus $|\phi(f)| \le \epsilon$ whenever $f \in U_1$ and $||f||_G \le \delta \epsilon$. By Lemma 3.7, $\phi \in L_F(A)$.

COROLLARY 3.9. (a) β_F and σ have the same bounded sets.

- (b) Theorem 2.3 holds if we replace τ with β_F .
- 4. The dual spaces of (A, β) , (A, β_1) , and (A, β_F) . In this section we will represent the dual spaces of (A, β) , (A, β_1) and (A, β_F) by means of integrals with respect to operator-valued measures. We will denote by Bo(X) and Bo(Y)

the σ -algebras of Borel subsets of X and Y respectively.

The σ -algebra of Baire subsets of Y will be denoted by Ba(Y), while the σ -algebra, of subsets of X, generated by the B-zero sets will be denoted by Ba(Z_B) (a subset Z of X is called a B-zero set if $Z = f^{-1}\{0\}$ for some $f \in B$).

Let Σ be a σ -algebra of sets and let $\Sigma_1 \subset \Sigma$. A bounded, countably-additive, real-valued, measure m on Σ is called regular with respect to Σ_1 if for every $G \in \Sigma$ and every $\epsilon > 0$ there exists $G_1 \in \Sigma_1$, contained in G, such that $|m(H)| < \epsilon$ for every $H \in \Sigma$ which is contained in $G - G_1$.

We denote by $M_{\sigma}(B)$ the space of all bounded, real-valued, countably-additive, regular with respect to the family of all B-zero sets, measures on $Ba(Z_B)$. The space of all bounded, real-valued countably-additive, regular with respect to the family of zero sets in Y, measures on Ba(Y) will be denoted by $M_{\sigma}(Y)$. A regular Borel measure on Bo(X) (Bo(Y)) is a bounded, countably-additive, real-valued, measure on Bo(X) (Bo(Y)) which is regular with respect to the closed sets in X(Y). A regular Borel measure m on Bo(X) is called τ -additive if $|m|(F_{\alpha}) \to 0$ for each net $\{F_{\alpha}\}$ of closed sets in X which decreases to the empty set. In the case of Y, every regular Borel measure is τ -additive (see [23]).

Note. A regular Borel measure m on Bo(X) is τ -additive iff $|m|(Z_{\alpha}) \to 0$ for every net $\{Z_{\alpha}\}$ of B-zero sets which decreases to the empty set. Indeed, assume that the condition is satisfied and let $\{G_{\alpha}\}$ be a net of closed sets decreasing to the empty set. Since the zero sets in Y form a base for the closed sets, it follows that the family of B-zero sets forms a base for the closed sets in X. Thus each G_{α} is an intersection of B-zero sets. Let

$$D = \{Z \subset X : Z \text{ a } B\text{-zero set}, Z \supset G_{\alpha} \text{ for some } \alpha\}.$$

Then D is directed (by inclusion) downwards to the empty set. By hypothesis, given $\epsilon > 0$, there exists $Z \in D$ with $|m|(Z) < \epsilon$. Let α_0 be such that $G_{\alpha_0} \subset Z$. Now for each $\alpha \ge \alpha_0$ we have $|m|(G_{\alpha}) \le |m|(Z) < \epsilon$ which proves that $|m|(G_{\alpha}) \longrightarrow 0$.

We will denote by $M_{\tau}(X)$ and $M_{\tau}(Y)$, respectively, the spaces of all τ -additive regular Borel measures on X and Y.

Let $M_{\sigma}(\operatorname{Ba}(Z_B), E')$ denote the set of all functions $m: \operatorname{Ba}(Z_B) \longrightarrow E'$ with the following two properties:

- (1) For each $s \in E$, the function $ms : Ba(Z_B) \longrightarrow R$, (ms)(F) = m(F)s, is in $M_{\sigma}(B)$.
- (2) $|m|(X) < \infty$, where |m| is defined on $\operatorname{Ba}(Z_B)$ by $|m|(G) = \sup |\Sigma m(F_i)s_i|$, the supremum being taken over all finite partitions $\{F_i\}$ of G into sets in $\operatorname{Ba}(Z_B)$ (we will refer to such a partition as a $\operatorname{Ba}(Z_B)$ -partition) and all finite collections $\{s_i\} \subset E$ with $||s_i|| \le 1$. We define $M_{\tau}(\operatorname{Bo}(X), E')$ as we did $M_{\sigma}(\operatorname{Ba}(Z_B), E')$ by replacing $\operatorname{Ba}(Z_B)$ with $\operatorname{Bo}(X)$ and $M_{\sigma}(B)$ with $M_{\tau}(X)$. The

spaces $M_{\sigma}(\text{Ba}(Y), E')$ and $M_{\tau}(\text{Bo}(Y), E')$ are defined analogously. For m in any one of the above spaces, we define its norm ||m|| by ||m|| = |m|(X) or |m|(Y) (depending on the σ -algebra on which m is defined).

THEOREM 4.1. If
$$m \in M_{\sigma}(Ba(Z_B), E')$$
, then $|m| \in M_{\sigma}(B)$.

PROOF. It is easy to see that |m| is a bounded, monotone, finitely-additive, set function on $\operatorname{Ba}(Z_B)$. To prove the regularity, consider a $G \in \operatorname{Ba}(Z_B)$ and let $\epsilon > 0$ be given. By the definition of |m|(G), there exist a finite $\operatorname{Ba}(Z_B)$ -partition $\{F_i\}$ of G and $s_i \in E$, with $||s_i|| \le 1$, such that $\sum m(F_i)s_i > |m|(G) - \epsilon$. By the regularity of each ms_i , there are B-zero sets $Z_i \subset F_i$ such that $\sum m(Z_i)s_i > |m|(G) - \epsilon$. The B-zero set $Z = \bigcup Z_i$ is contained in G. Moreover, $|m|(Z) \ge \sum m(Z_i)s_i > |m|(G) - \epsilon$ which proves the regularity of |m|.

To finish the proof it remains to show that |m| is countably-additive. To this end, consider a sequence $\{F_i\}$ of disjoint members of $Ba(Z_B)$ and let $G = \bigcup_i F_i$. Since |m| is monotone and finitely-additive, we have

$$|m|(G) \ge |m| \left(\bigcup_{i=1}^n F_i\right) = \sum_{i=1}^n |m|(F_i)$$

for all n and hence $|m|(G) \ge \sum_{i=1}^{\infty} |m|(F_i)$. On the other hand, let $\epsilon > 0$ be given. There exist a Ba (Z_B) -partition G_1, \ldots, G_N of G, and $s_i \in E$, with $||s_i|| \le 1$, such that $\sum_{i=1}^{N} m(G_i) s_i > |m|(G) - \epsilon$. For each i we have $m(G_i) s_i = \sum_{n=1}^{\infty} m(G_i \cap F_n) s_i$. Moreover,

$$\sum_{n=1}^{\infty} \sum_{i=1}^{N} |m(G_i \cap F_n) s_i| \le \sum_{n=1}^{\infty} |m|(F_n) \le |m|(G).$$

Hence

$$|m|(G) - \epsilon < \sum_{i=1}^{N} m(G_i) s_i = \sum_{i=1}^{N} \sum_{n=1}^{\infty} m(G_i \cap F_n) s_i$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{N} m(G_i \cap F_n) s_i < \sum_{n=1}^{\infty} |m|(F_n) \le |m|(G).$$

Since $\epsilon > 0$ was arbitrary, we conclude that $|m|(G) = \sum_{n=1}^{\infty} |m|(F_n)$. This completes the proof.

THEOREM 4.2. If
$$m \in M_{\tau}(Bo(X), E')$$
, then $|m| \in M_{\tau}(X)$.

PROOF. Using an argument similar to that of Theorem 4.1, we show that |m| is a regular Borel measure on Bo(X). It remains to show that |m| is τ -additive. By the note at the beginning of §4, it suffices to show that $|m|(Z_{\alpha}) \to 0$ for each net $\{Z_{\alpha}\}$ of B-zero sets which decreases to the empty set. So, let $\{Z_{\alpha}\}$ be such a net. For each α there exists a zero set \hat{Z}_{α} in Y such that $Z_{\alpha} = \hat{Z}_{\alpha} \cap X$. Define $\bar{m}: Bo(Y) \to E'$ by $\bar{m}(F) = m(F \cap X)$. For each $s \in E$, the function $\bar{m}s: Bo(Y) \to R$, $(\bar{m}s)(F) = (ms)(F \cap X)$ is in $M_{\tau}(Y)$ since ms is τ -additive. It

now follows easily that $\overline{m} \in M_{\tau}(\operatorname{Bo}(Y), E')$ and that $|\overline{m}|(F) = |m|(F \cap X)$ for each Borel set F in Y. Let D denote the collection of all subsets Z of Y which are intersections of a finite number of \hat{Z}_{α} 's. Then D is directed downwards to $G = \bigcap \hat{Z}_{\alpha}$. Hence $|\overline{m}|(G) = \lim_{Z \in D} |\overline{m}|(Z)$. Since $G \cap X = \emptyset$ we have |m|(G) = 0. Therefore, given $\epsilon > 0$ there exists a $Z = \hat{Z}_{\alpha_1} \cap \cdots \cap \hat{Z}_{\alpha_n}$ in D such that $|\overline{m}|(Z) < \epsilon$. Now, if $\alpha \geqslant \alpha_1, \ldots, \alpha_n$, then

$$|m|(Z_{\alpha}) \leq |m|(Z_{\alpha_1} \cap \cdots \cap Z_{\alpha_n}) = |\overline{m}|(Z) < \epsilon.$$

This proves that $\lim |m|(Z_{\alpha}) = 0$ and the proof is complete.

We have analogous theorems for the elements in the spaces $M_{\sigma}(\text{Ba}(Y), E')$ and $M_{\tau}(\text{Bo}(Y), E')$.

Next we will define integrals with respect to measures belonging to one of the spaces defined above. The integration process which we will employ is a generalization, to the vector case, of the process of Aleksandrov. It is one of the many integration processes defined by McShane [17].

Let $m \in M_{\sigma}(\operatorname{Ba}(Z_B), E')$, $G \in \operatorname{Ba}(Z_B)$, and $f \in A$. Consider the collection D of all $\alpha = \{F_1, \ldots, F_n; x_1, \ldots, x_n\}$ where $\{F_i\}$ is a $\operatorname{Ba}(Z_B)$ partition of G and $x_i \in F_i$. For $\alpha_1, \alpha_2 \in D$ we write $\alpha_1 \geqslant \alpha_2$ iff the partition of G in α_1 is a refinement of the partition of G in α_2 . Then (D, \geqslant) is a directed set. For each $\alpha = \{F_1, \ldots, F_n; x_1, \ldots, x_n\}$ in D we define $w_{\alpha} = \sum m(F_i)f(x_i)$. We will show that $\{w_{\alpha}\}$ is a Cauchy net in R and hence convergent. Indeed, let $\epsilon > 0$ be given. We may assume, without loss of generality, that $\|m\| \leqslant 1$. For each $x \in X$, let $V_x = \{y \in X : \|f(x) - f(y)\| < \epsilon\}$. Then V_x is a B-cozero set and hence in $\operatorname{Ba}(Z_B) : \operatorname{If} W = \{s \in E : \|s\| < \epsilon\}$, then $V_x = f^{-1}(f(x) + W)$. Since f(X) is totally bounded, there are x_1, \ldots, x_N in X such that $f(X) \subset \bigcup_{i=1}^N (f(x_i) + W)$. Thus $X = \bigcup_{i=1}^N V_{x_i}$. Let $G_i' = V_{x_i} \cap G$. Define $G_1 = G_1'$ and $G_{n+1} = G_{n+1}' - \bigcup_{i=1}^n G_{i}$, $n = 1, \ldots, N-1$. Keeping those G_i which are not empty we get a $\operatorname{Ba}(Z_B)$ partition $\{F_1, \ldots, F_n\}$ of G with the property that $\|f(x) - f(y)\| \leqslant 2\epsilon$ if x, y are in the same F_i . Pick $x_i \in F_i$ and let $\alpha_0 = \{F_1, \ldots, F_n; x_1, \ldots, x_n\}$. If α_1, α_2 are in D with $\alpha_1, \alpha_2 \geqslant \alpha_0$, then

$$|w_{\alpha_1}-w_{\alpha_2}| \leq |w_{\alpha_1}-w_{\alpha_0}| + |w_{\alpha_0}-w_{\alpha_2}| \leq 2\epsilon |m|(G) + 2\epsilon |m|(G) \leq 4\epsilon.$$

This proves that the net $\{w_{\alpha}\}$ is a Cauchy net and hence convergent. We define $\int_G f \, dm = \lim w_{\alpha}$. It can be shown easily that, for disjoint F_1 and F_2 in $\text{Ba}(Z_B)$ and $G = F_1 \cup F_2$, we have $\int_G f \, dm = \int_{F_1} f \, dm + \int_{F_2} f \, dm$. Moreover we have the following easily established

LEMMA 4.3. (a) The map $f \rightarrow \int_G f dm$ is linear on A.

(b)
$$\left| \int_G f \, dm \right| \le \int_G \|f(x)\| \, d|m|(x) \le \|f\| \, |m|(G) \quad \text{for all } f \in A.$$

We similarly define integrals of functions in A with respect to members of $M_{\tau}(\text{Bo}(X), E')$.

LEMMA 4.4. Let m be a bounded, real-valued, countably additive measure on $Ba(Z_B)$. Then $m \in M_a(B)$.

PROOF. We first show that for any B-zero set Z and any $\epsilon > 0$ there exists a B-cozero set V, containing Z, such that $|m|(Z) > |m|(V) - \epsilon$. Indeed, if Z is a B-zero set, there exists $f \ge 0$ in B such that $Z = f^{-1}\{0\}$. For each positive integer n, we set $V_n = \{x : f(x) < 1/n\}$. Then V_n is a B-cozero set and the sequence $\{V_n\}$ decreases to Z. Since |m| is countably additive, we have $|m|(Z) = \lim |m|(V_n)$ which implies our claim. Thus every B-zero set belongs to the family Σ of all subsets G of X with the following property: Given $\epsilon > 0$ there exist a B-zero set Z and a B-cozero set V, with $Z \subset G \subset V$, such that $|m|(V-Z) < \epsilon$. The family Σ is a σ -algebra which contains all B-zero sets and hence $\operatorname{Ba}(Z_B) \subset \Sigma$. This implies that m is regular with respect to the family of all B-zero sets. The lemma is proved.

LEMMA 4.5. Let $m \in M_{\tau}(Bo(X), E')$ and let μ denote the restriction of m to $Ba(Z_R)$. Then $\mu \in M_{\sigma}(Ba(Z_R), E')$ and $\int_C f dm = \int_C f d\mu$ for each $f \in A$.

PROOF. In view of the preceding lemma, the restriction $ms|_{Ba(Z_B)}$ belongs to $M_{\sigma}(B)$ for all $s \in E$. Now, it follows that $\mu \in M_{\sigma}(Ba(Z_B), E')$. If we look at the proof of the existence of $\int_G f d\mu$ and $\int_G f dm$ we can see that $\int_G f dm$ and $\int_G f d\mu$ coincide.

Integrals of functions in C, with respect to members of $M_{\sigma}(\text{Ba}(Y), E')$ and $M_{\tau}(\text{Bo}(Y), E')$, are defined similarly.

LEMMA 4.6. If m_1 , $m_2 \in M_{\tau}(Bo(Y), E')$ are such that $\int_Y \hat{f} dm_1 = \int_Y \hat{f} dm_2$ for all $f \in A$, then $m_1 = m_2$.

PROOF. Let $s \in E$. For each $f \in B$, we have

$$\int_{Y} \hat{f} d(m_1 s) = \int_{Y} \hat{f} s dm_1 = \int_{Y} \hat{f} s dm_2 = \int_{Y} \hat{f} d(m_2 s).$$

By the uniqueness part of the Riesz representation theorem, we have $m_1s = m_2s$. This, being true for all $s \in E$, implies that $m_1 = m_2$.

For a proof of the following theorem see Wells [25].

THEOREM 4.7. Let ϕ be a linear functional on C. Then ϕ is continuous with respect to the uniform norm topology iff there exists $m \in M_{\tau}(\mathrm{Bo}(Y), E')$ such that $\phi(\hat{f}) = \int_{Y} \hat{f} dm$ for all $\hat{f} \in C$. Moreover, $\|\phi\| = \|m\|$.

If $m \in M_{\tau}(Bo(Y), E')$ and $m_1 = m|_{Ba(Y)}$ then $m_1 \in M_{\sigma}(Ba(Y), E')$ and $\int_Y \hat{f} dm_1 = \int_Y \hat{f} dm$ for all $f \in A$. Furthermore, $||m_1|| = ||m||$. To prove the last equality, consider the linear map $\phi: C \longrightarrow R$, $\phi(\hat{f}) = \int_Y \hat{f} dm = \int_Y \hat{f} dm_1$. By 4.7

we have $\|\phi\| = \|m\|$. Also $\|\phi\| \le \|m_1\|$ since $|\phi(\hat{f})| = |\int_Y \hat{f} dm_1| \le \|\hat{f}\| \|m_1\|$. Since $\|m\| \ge \|m_1\|$, it follows that $\|\phi\| = \|m_1\| = \|m\|$. Moreover, the inequality $|m_1|(G) \le |m|(G)$, together with $|m_1|(Y) = |m|(Y)$, implies that $|m_1| = |m||_{\text{Ba}(Y)}$.

Let now $\phi \in A'$. Define $\hat{\phi}: C \to R$, $\hat{\phi}(\hat{f}) = \phi(f)$. Clearly $\hat{\phi} \in C'$. Let $m = \hat{m}_{\phi}$ be the element of $M_{\tau}(Bo(Y), E')$ that corresponds to $\hat{\phi}$ by Theorem 4.7.

LEMMA 4.8. For a $Q \in \Omega$, the following are equivalent:

- (1) $\phi \in (A, \beta_O)'$.
- (2) |m|(Q) = 0.

PROOF. (1) \to (2). By regularity it suffices to show that m(G)s = 0 for each closed set G in Y contained in Q and each $s \in E$, $||s|| \le 1$. So, let G be such a set and $s \in E$ with $||s|| \le 1$. There exists an open set G in G containing G and such that $|ms|(G - G) < \epsilon$ ($\epsilon > 0$ arbitrary). Since ϕ is β_Q -continuous, there exist $g \in B_Q$ and G such that $|\phi(f)| \le G$ for all G with $||gf|| \le G$. Choose G so that G so that G set

$$O_1 = \{x \in Y : |\hat{g}(x)| < 1/n\} \text{ and } O_2 = O_1 \cap O.$$

Clearly $G \subset O_2$ and $|\dot{ms}|(O_2 - G) < \epsilon$. Choose $h \in B$, $0 \le h \le 1$, $\hat{h} = 1$ on G and $\hat{h} = 0$ on the complement of O_2 . Let f = nhs. Since $||gf|| \le 1$, we have $|\phi(hs)| \le K/n < \epsilon$. But

$$|\phi(hs)| = \left| m(F)s + \int_{O_2 - G} \hat{h}s \, dm \right| \ge |m(F)s| - \epsilon.$$

Thus $|m(G)s| \le 2\epsilon$ which proves that m(G)s = 0 and (2) follows.

(2) \longrightarrow (1). Suppose that |m|(Q)=0 and let r>0. Choose an open set V in Y with $|m|(V)<1/(2r), Q\subset V$. There exists $g\in B_Q$ such that $\hat{g}=1$ on the complement of V. Set $W=\{f\in A:\|gf\|\leqslant 1/2\|m\|\}$. Then $W\cap U_r\subset H$ where $H=\{f\in A:|\phi(f)|\leqslant 1\}$ and $U_r=\{f\in A:\|f\|\leqslant r\}$. This shows that H is a β_Q -neighborhood of zero and hence ϕ is β_Q -continuous.

THEOREM 4.9. Let $\phi \in A'$ and let $m \in M_{\tau}(Bo(Y), E')$ be such that $\phi(f) = \int_{Y} \hat{f} dm$ for all $f \in A$. Then:

- (1) $\phi \in (A, \beta)'$ iff |m|(Q) = 0 for all $Q \in \Omega$.
- (2) $\phi \in (A, \beta_1)'$ iff |m|(Z) = 0 for all $Z \in \Omega_1$.

PROOF. It follows from the preceding lemma and from the fact that ϕ is β -continuous iff ϕ is β_Q -continuous for all $Q \in \Omega$, and ϕ is β_1 -continuous iff ϕ is β_Q -continuous for all $Q \in \Omega_1$.

Let now $\hat{m} \in M_{\tau}(Bo(Y), E')$ be such that $|\hat{m}|(Q) = 0$ for all $Q \in \Omega$. By the regularity of $|\hat{m}|$, we have $|\hat{m}|(G) = 0$ for each Borel set G in Y disjoint from X. Define $m: Bo(X) \to E'$ by $m(G \cap X) = \hat{m}(G)$ for each G in Bo(Y). This

gives us a well-defined function on Bo(X). The proof of the following is straightforward and we omit it.

LEMMA 4.10. (1) $m \in M_{\tau}(Bo(X), E')$.

- (2) $|m|(G \cap X) = |\widehat{m}|(G)$ for each G in Bo(Y).
- (3) $\int_X f dm = \int_Y \hat{f} d\hat{m}$ for all $f \in A$.

Similarly, if $\hat{m}_1 \in M_\sigma(\mathrm{Ba}(Y), E')$ is such that $|\hat{m}_1|(Z) = 0$ for each $Z \in \Omega_1$, then the function $m_1 : \mathrm{Ba}(Z_B) \longrightarrow E'$, $m_1(G \cap X) = \hat{m}_1(G)$ for all $G \in \mathrm{Ba}(Y)$, is well defined and the following is true.

LEMMA 4.11. (1) $m_1 \in M_q(Ba(Z_B), E')$.

- (2) $|m_1|(G \cap X) = |\hat{m}_1|(G)$ for each G in Ba(Y).
- (3) $\int_X f dm_1 = \int_Y \hat{f} d\hat{m}_1$ for each $f \in A$.

An element ϕ of the uniform dual B' of B is called τ -additive iff $\phi(f_{\alpha}) \longrightarrow 0$ for each net $\{f_{\alpha}\}$ in B which decreases pointwise to zero. Let $L_{\tau}(B)$ denote the collection of all τ -additive members of B.

LEMMA 4.12. The map $m \to \phi$ defined by the formula $\phi(f) = \int f dm$ for all $f \in B$ establishes an isomorphism between the spaces $M_{\tau}(X)$ and $L_{\tau}(B)$.

PROOF. By LeCam [16, p. 214], every τ -additive member of B' has a unique extension to a τ -additive functional on the space $C^b(X)$ of all bounded continuous real-valued functions on X. By Varandarajan [24] and by Kirk [13, Theorem 1.12], the space of τ -additive functionals on $C^b(X)$ is isomorphic to the space $M_{\tau}(X)$ via the isomorphism $m \to \phi$, $\phi(f) = \int f dm$ for all $f \in C^b(X)$. Hence the result follows.

LEMMA 4.13. Let $m \in M_{\tau}(X)$. Define \overline{m} on Bo(Y) by $\overline{m}(G) = m(G \cap X)$. Then $\overline{m} \in Bo(Y)$.

PROOF. By (4.12), the linear functional ϕ , defined on B by $\phi(f) = \int f \, dm$, is τ -additive. Define $\hat{\phi}$ on the space $C(Y) = \{\hat{f}: f \in B\}$ by $\hat{\phi}(\hat{f}) = \phi(f)$. Then $\hat{\phi}$ is in the uniform dual of C(Y). By the Riesz representation theorem there exists $\mu \in M_{\tau}(Y)$ such that $\hat{\phi}(\hat{f}) = \int \hat{f} \, d\mu$ for all $f \in B$. By an argument similar to that employed by Knowles [14, Theorem 2.4], we show that $|\mu|(G) = 0$ for each Borel subset G of Y which is disjoint from X. Define m_1 on Bo(X) by $m_1(G \cap X) = \mu(G)$ for all $G \in Bo(Y)$. It is easy to see that m_1 is a well-defined element of $M_{\tau}(X)$ and $\int_X f \, dm_1 = \int_Y \hat{f} \, d\mu = \phi(f) = \int_X f \, dm$ for all $f \in B$. By 4.12 we have $m = m_1$. Since for $G \in Bo(Y)$, $\mu(G) = m_1(G \cap X) = m(G \cap X)$, it follows that $\hat{m} = \mu \in M_{\tau}(Y)$. This completes the proof.

LEMMA 4.14. If m and m_1 are both in $M_{\sigma}(B)$ and if $\iint dm = \iint dm_1$ for all $f \in B$, then $m = m_1$.

PROOF. Let Z be a B-zero set. There exists a sequence $\{f_n\}$ in B which decreases pointwise to the characteristic function $\chi_Z = g$ of Z. Thus

$$m(Z) = \int_{\mathcal{S}} dm = \lim_{n \to \infty} \int_{\mathcal{T}_n} dm = \lim_{n \to \infty} \int_{\mathcal{T}_n} dm_1 = m_1(Z).$$

The result now follows from the regularity of m and m_1 .

LEMMA 4.15. Let $m \in M_{\sigma}(B)$. Define \overline{m} on Ba(Y) by $\overline{m}(G) = m(G \cap X)$ for all $G \in Ba(Y)$. Then $\overline{m} \in M_{\sigma}(Y)$.

PROOF. Let $\mu \in M_{\tau}(Y)$ be such that $\int_{Y} \hat{f} d\mu = \int_{X} f dm$ for all $f \in B$. Let $\mu_{1} = \mu|_{Ba(Y)}$. Then $\mu_{1} \in M_{\sigma}(Y)$ and $\int_{X} f dm = \int_{Y} \hat{f} d\mu_{1}$ for all $f \in B$. Since the functional $f \longrightarrow ff dm$ is σ -additive on B (i.e. $\int_{I} f dm \longrightarrow 0$ for each sequence $\{f_{n}\}$ in B which decreases pointwise to zero) it follows, as in the proof of Theorem 2.1 of Knowles [14], that $|\mu_{1}|(G) = 0$ for each Baire set G in Y which is disjoint from X. Define $m_{1} : Ba(Z_{B}) \longrightarrow R$, $m_{1}(G \cap X) = \mu_{1}(F)$ for each Baire set G in G. Then G is a well-defined member of G and G and G and G and G and G and G are G in G and G are G in G and G are G are G are G and G are G are G and G are G are G are G are G and G are G. By Lemma 4.14 we have G are G are G are G and G are G are G are G are G are G and G are G are G are G are G and G are G are G and G are G are G are G and G are G are G are G and G are G are G are G are G and G are G are G are G and G are G are G are G and G are G and G are G are G are G and G are G are G and G are G are G are G are

Now using 4.13 and 4.15 we easily get the following result.

LEMMA 4.16. Let $m \in M_{\tau}(\operatorname{Bo}(X), E')$ and $m_1 \in M_{\sigma}(\operatorname{Ba}(Z_B), E')$. Define \hat{m} and \hat{m}_1 on $\operatorname{Bo}(Y)$, respectively, by $\hat{m}(Q) = m(Q \cap X)$, $\hat{m}_1(G) = m_1(G \cap X)$. Then:

- (1) $\hat{m} \in M_{\tau}(\mathrm{Bo}(Y), E')$ and $\hat{m}_1 \in M_{\sigma}(\mathrm{Ba}(Y), E')$.
- (2) $|\hat{m}|(Q) = |m|(Q \cap X)$ for all $Q \in Bo(Y)$, and $|\hat{m}_1|(Q) = |m_1|(G \cap X)$ for all $G \in Ba(Y)$.
 - (3) $\int_X f dm = \int_Y \hat{f} d\hat{m}$ and $\int_X f dm_1 = \int_Y \hat{f} d\hat{m}_1$ for all $f \in A$.

LEMMA 4.17. Every $m \in M_{\sigma}(Ba(Y), E')$ has a unique extension to a μ in $M_{\tau}(Ba(Y), E')$.

PROOF. Define ϕ on C by $\phi(\hat{f}) = \int_{\gamma} \hat{f} dm$. Then $\phi \in C'$. By 4.7 there exists a unique μ in $M_{\tau}(\text{Bo}(Y), E')$ such that $\phi(\hat{f}) = \int_{0}^{\infty} d\mu$ for all $f \in A$. Let $\mu_{1} = \mu \mid_{\text{Ba}(Y)}$. We will show that $\mu_{1} = m$. Indeed, let $s \in E$. Then $\mu_{1}s$ and ms are both in $M_{\sigma}(Y)$. Moreover $\int_{0}^{\infty} d(ms) = \int_{0}^{\infty} s dm = \int_{0}^{\infty} s d\mu_{1} = \int_{0}^{\infty} d(\mu_{1}s)$ for all $f \in B$. It follows that $ms = \mu_{1}s$ for all $s \in E$ and hence $m = \mu_{1}$. Since $\mu \in M_{\sigma}(\text{Bo}(Y), E')$ the result follows.

Combining Lemmas 4.6, 4.17 and 4.16 we get

LEMMA 4.18. If m_1 , $m_2 \in M_{\tau}(\operatorname{Bo}(X), E')$ $[m_1, m_2 \in M_{\sigma}(\operatorname{Ba}(Z_B), E')]$ are such that $\int_X f \, dm_1 = \int_X f \, dm_2$ for all $f \in A$, then $m_1 = m_2$.

We are now in a position to identify the dual spaces of (A, β) , (A, β_1) and (A, β_F) .

THEOREM 4.19. Let $\phi \in A'$. Then:

- (1) ϕ is β -continuous iff there exists $m \in M_{\tau}(Bo(X), E')$ such that $\int f dm = \phi(f)$ for all $f \in A$.
- (2) ϕ is β_1 -continuous iff there exists $m \in M_{\sigma}(Ba(Z_B), E')$ such that $\phi(f) = \iint dm$ for all $f \in A$.

Furthermore, the m that corresponds to a β -continuous (β_1 -continuous) member ϕ of A' is unique and $||\phi|| = ||m||$.

PROOF. (1) Suppose that ϕ is β -continuous. Let \hat{m} be the element of $M_{\tau}(\mathrm{Bo}(Y), E')$ with the property that $\phi(f) = \int \hat{f} \, d\hat{m}$ for all $f \in A$. Define m on $\mathrm{Bo}(X)$ by $m(G \cap X) = \hat{m}(G)$ for all $G \in \mathrm{Bo}(Y)$. This gives us an element m of $M_{\tau}(\mathrm{Bo}(X), E')$ by 4.9 and 4.10. Moreover, by 4.10, $\int_X f \, dm = \int_Y \hat{f} \, d\hat{m} = \phi(f)$ for all $f \in A$. Also $\|\phi\| = \|\hat{m}\| = \|m\|$. Conversely, let $m \in M_{\tau}(\mathrm{Bo}(X), E')$ be such that $\phi(f) = \int f \, dm$ for all $f \in A$. Define \hat{m} on $\mathrm{Bo}(Y)$ by $\hat{m}(G) = m(G \cap X)$. By 4.16, we have $m \in M_{\tau}(\mathrm{Bo}(Y), E')$ and $\int_X f \, dm = \int_Y \hat{f} \, d\hat{m}$ for all $f \in A$. Since $|\hat{m}|(Q) = |m|(Q \cap X) = 0$ for all $Q \in \Omega$, we have $\phi \in (A, \beta)'$ by 4.9. Finally the uniqueness of m follows from 4.18.

(2) The proof is similar to that of (1).

THEOREM 4.20. For a $\phi \in A'$ the following are equivalent:

- (1) $\phi \in (A, \beta_E)'$.
- (2) There exists $m \in M_{\tau}(Bo(X), E')$ such that
 - (a) $\phi(f) = \iint dm \text{ for all } f \in A$,
 - (b) given $\epsilon > 0$ there exists $G \in F$ with $|m|(X G) < \epsilon$.

PROOF. (2) \rightarrow (1). Let $\epsilon > 0$ be given. Choose G in F with $|m|(X - G) < \epsilon/2$. Let $\delta > 0$ be such that $2\delta ||m|| < \epsilon$. If $f \in A$, $||f|| \le 1$, $||f||_G \le \delta$, then

$$|\phi(f)| \le \left| \int_G f \, dm \right| + \left| \int_{X-G} f \, dm \right| \le \delta \, |m|(G) + |m|(X-G) \le \epsilon.$$

Hence $\phi \in (A, \beta_F)'$ by 3.7.

 $(1) \longrightarrow (2). \text{ Since } \beta_F \leqslant \beta, \text{ we have } \phi \in (A, \beta)'. \text{ Hence there exists } m \in M_{\tau}(\operatorname{Bo}(X), E') \text{ such that } \phi(f) = \int f dm \text{ for all } f \text{ in } A. \text{ Define } \widehat{m} \text{ on Bo}(Y) \text{ by } \widehat{m}(G) = m(G \cap X). \text{ By } 4.16, \ \widehat{m} \in M_{\tau}(\operatorname{Bo}(Y), E'). \text{ Let } \epsilon > 0 \text{ be given. By } 3.7 \text{ there exist } G \text{ in } F \text{ and } \delta > 0 \text{ such that } |\phi(f)| \leqslant \epsilon_1 = \epsilon/3 \text{ for all } f \text{ in } W = \{h \in A : \|h\| \leqslant 1, \|h\|_G \leqslant \delta\}. \text{ By the definition of } |\widehat{m}| \text{ there exist a partition } F_1, \ldots, F_n \text{ of } Y - G, \text{ into Borel sets, and } s_i \in E, \text{ with } \|s_i\| \leqslant 1, \text{ such that } \Sigma \widehat{m}(F_i)s_i > |\widehat{m}|(Y - G) - \epsilon_1 = |m|(X - G) - \epsilon_1. \text{ There are closed sets } G_i \text{ in } Y, G_i \subset F_i, \text{ such that } \Sigma \widehat{m}(G_i)s_i > |m|(X - G) - \epsilon_1. \text{ Choose pairwise disjoint open sets } V_i, 1 \leqslant i \leqslant n, G_i \subset V_i \subset Y - G, \text{ such that } \Sigma |\widehat{m}|(V_i - G_i) < \epsilon_1. \text{ For each } i, 1 \leqslant i \leqslant n, \text{ choose } h_i \text{ in } B, 0 \leqslant h_i \leqslant 1, \widehat{h}_i = 1 \text{ on } G_i \text{ and } \widehat{h}_i = 0 \text{ on } Y - V_i. \text{ Let } f = \Sigma h_i s_i. \text{ Then } f \in W \text{ and hence } |\phi(f)| \leqslant \epsilon_1. \text{ Since}$

$$\phi(f) \leq \sum \int_{G_i} s_i \, d\hat{m} + \sum \int_{V_i - G_i} \hat{f} \, d\hat{m} \geq \sum \hat{m}(G_i) s_i - \epsilon_1 \geq |m|(X - G) - 2\epsilon_1,$$

it follows that $|m|(X-G) \le 3\epsilon_1 = \epsilon$. The theorem is proved.

DEFINITION. A subset M_0 of $M_{\tau}(\mathrm{Bo}(X), E')$ is called F-tight if M_0 is norm bounded and given $\epsilon > 0$ there exists G in F with $|m|(X - G) \leq \epsilon$ for all m in M_0 .

LEMMA 4.21. Let $\phi \in (A, \beta)'$ and let m be the corresponding element of $M_{\tau}(Bo(X), E')$. Let $G \in F$ and $\epsilon > 0$. The following are equivalent:

- $(1) |m|(X-G) \leq \epsilon.$
- (2) For all $f \in A$ with $||f|| \le 1$ and $||f||_G = 0$ we have $|\phi(f)| \le \epsilon$.

We omit the proof of this lemma since we can use an argument similar to that used in the implication $(1) \rightarrow (2)$ of Theorem 4.20.

For $H \subset L_F(A)$, let $M_H = \{m_\phi : \phi \in H\} \subset M_\tau(\mathrm{Bo}(X), E')$ where m_ϕ is the measure that corresponds to ϕ .

THEOREM 4.22. For $H \subset L_F(A)$ the following are equivalent:

- (1) H is β_F -equicontinuous.
- (2) (a) H is norm bounded.
- (b) Given $\epsilon > 0$ there exists $G \in F$ such that $|\phi(f)| \leq \epsilon$ for all $\phi \in H$ and all $f \in A$ with $||f|| \leq 1$ and f = 0 on G.
 - (3) M_H is F-tight.

PROOF. By 4.21, (2) and (3) are equivalent.

- (1) \to (2). (a) The set $U_1 = \{f \in A : ||f|| \le 1\}$ is norm bounded and hence β -bounded. Since H^0 (= polar of H with respect to the pair $\langle L_F(A), A \rangle$) is a β_F -neighborhood of zero there exists K > 0 such that $U_1 \subset KH^0$. It follows that $||\phi|| \le K$ for all ϕ in H.
- (b) Let $\epsilon > 0$ be given. Since ϵH^0 is a β_F -neighborhood of zero there exist G in F and $\delta > 0$ such that $W = \{f \in A : \|f\| \le 1, \|f\|_G \le \delta\} \subset \epsilon H^0$. Thus (b) follows.
- (3) \rightarrow (1). Let $d = \sup \{ \|m_{\phi}\| : \phi \in H \} = \sup \{ \|m_{\phi}\| : \phi \in H \}$. Given r > 0 there exists $G \in F$ such that $|m_{\phi}|(X F) \le 1/(2r)$ for all $\phi \in H$. If $V = \{ f \in A : \|f\|_G \le 1/(2d) \}$, then $V \cap U_r \subset H^0$, where $U_r = \{ f \in A : \|f\| \le r \}$. This shows that H^0 is a β -neighborhood of zero and this completes the proof.
- 5. In this section we will assume that E is a Banach lattice. We write $f \ge g$ iff $f(x) \ge g(x)$ for all $x \in X$. Since the lattice operations are continuous, it is easy to verify that A, under the relation \ge , is a Banach lattice where for f, g in A we have

$$(f \wedge g)(x) = f(x) \wedge g(x),$$

$$(f \lor g)(x) = f(x) \lor g(x)$$
, and $|f|(x) = |f(x)|$

for all $x \in X$. For a $\phi \in A'$ the ϕ^+ , ϕ^- , $|\phi|$ are the elements of A' which are defined on positive $f \in A$ by

$$\phi^{+}(f) = \sup \{ \phi(g) : 0 \le g \le f \},$$

$$\phi^{-}(f) = -\inf \{ \phi(g) : 0 \le g \le f \},$$

$$|\phi|(f) = \sup \{ |\phi(g)| : |g| \le f \}.$$

THEOREM 5.1. Each of the spaces (A, β) , (A, β_1) and (A, β_F) is locally solid.

PROOF. Let W be a convex balanced β -neighborhood of zero. For each $Q \in \Omega$ there exists $g_Q \in B_Q$ such that $V_Q = \{f \in A : \|g_Q f\| \leq 1\} \subset W$. Each V_Q is clearly solid. Hence the set $V = \bigcup \{V_Q : Q \in \Omega\}$ is solid. By Peressini [18, p. 161], the convex balanced hull V_0 of V is solid. Since $V_0 \subset W$, the result follows for (A, β) . The proof for (A, β_1) is similar. For the (A, β_F) we observe that the class of sets of the form $\bigcap_{i=1}^{\infty} \{f \in A : \|f\|_{G_i} \leq a_i\}$, where $0 < a_i \to \infty$ and $G_i \in F$, consists of solid sets and is a β_F -base at zero.

DEFINITIONS. For a net $\{f_{\alpha}\}$ in A, we say that it decreases to zero, and write $f_{\alpha} \downarrow 0$, if for each $x \in X$ we have $\lim f_{\alpha}(x) = 0$ and $0 \le f_{\alpha}(x) \le f_{\gamma}(x)$ whenever $\alpha \ge \gamma$. An element ϕ of A' is called τ -additive if $\phi(f_{\alpha}) \longrightarrow 0$ whenever $f_{\alpha} \downarrow 0$. We will say that ϕ is σ -additive if $\phi(f_{n}) \longrightarrow 0$ for each sequence $\{f_{n}\}$ in A which decreases to zero. The set of all σ -additive (τ -additive) members of A' will be denoted by $L_{\alpha}(A)$ ($L_{\tau}(A)$).

THEOREM 5.2. Each of the dual spaces $(A, \beta)'$, $(A, \beta_1)'$ and $(A, \beta_F)'$ forms a linear lattice ideal in the Riesz space A'.

PROOF. This follows easily from the fact that the spaces (A, β) , (A, β_1) and (A, β_E) are locally solid.

THEOREM 5.3. The dual space of the space (A, β) is the space $L_{\tau}(A)$.

PROOF. Let $\phi \in A'$ and let $m \in M_{\tau}(\mathrm{Bo}(Y), E')$ be such that $\phi(f) = \iint dm$ for all $f \in A$. Suppose ϕ is β -continuous and let $f_{\alpha} \downarrow 0$. We want to show that $\phi(f_{\alpha}) \to 0$. Without loss of generality we may assume that $||f_{\alpha}|| \leq 1$ for all α . Let $\epsilon > 0$. For each α , set $Z_{\alpha} = \{x \in Y : ||\hat{f}_{\alpha}(x)|| \geq \epsilon\}$. Then $Z_{\alpha} \downarrow Q = \bigcap Z_{\alpha}$. Since $Q \in \Omega$ we have |m|(Q) = 0 by 4.9. Since $|m|(Z_{\alpha}) \to |m|(Q) = 0$, there exists α_0 such that $|m|(Z_{\alpha}) < \epsilon$ for all $\alpha \geq \alpha_0$. Now, for $\alpha \geq \alpha_0$, we have

$$|\phi(f_{\alpha})| \leq \left| \int_{Z_{\alpha}} f \, dm \right| + \left| \int_{Y-Z_{\alpha}} \hat{f} \, dm \right|$$

$$\leq |m|(Z_{\alpha}) + \epsilon ||m|| \leq \epsilon (1 + ||m||).$$

This shows that $\phi(f_{\alpha}) \longrightarrow 0$ and ϕ is τ -additive.

Conversely, assume that ϕ is τ -additive. Let Q in Ω and $0 \le s \in E$, $||s|| \le 1$. Choose an open set O in Y, $Q \subset O$, such that $|m|(O-Q) < \epsilon$ ($\epsilon > 0$ arbitrary). The collection $D = \{hs : h \in B, 0 \le h \le 1, \hat{h} = 1 \text{ on } Q \text{ and } \hat{h} = 0 \text{ on } Y - O\}$ is downwards directed to zero. Hence there exists hs in D such that $|\phi(hs)| < \epsilon$. But

$$|\phi(hs)| \ge \left| \int_{Q} s \, dm \right| - \left| \int_{Q-Q} \hat{h} s \, dm \right| \ge |m(Q)s| - |m|(Q-Q) \ge |m(Q)s| - \epsilon.$$

Hence $|m(Q)s| \le 2\epsilon$. This proves that m(Q)s = 0 for each Q in Ω and each $s \in E$, $||s|| \le 1$, $s \ge 0$. Since E is a lattice, we have m(Q)s = 0 for all $s \in E$. Now the regularity of ms and 4.9 complete the proof.

THEOREM 5.4. The dual of the space (A, β_1) is the space $L_{\alpha}(A)$.

PROOF. Let $\phi \in A'$ and $m \in M_{\tau}(\mathrm{Bo}(Y), E')$ be such that $\phi(f) = \int_{Y} \hat{f} \, dm$ for all f in A. Assume that ϕ is β_1 -continuous and let $\{f_n\}$ be a sequence in A that decreases to zero, We want to show that $\phi(f_n) \to 0$. We may assume without loss of generality that $\|f_n\| \le 1$ for all n. Let $\epsilon > 0$ and set $Z_n = \{x \in Y : \|\hat{f}_n(x)\| \ge \epsilon\}$. Then $Z_n \downarrow \bigcap Z_n = Z$ and $Z \in \Omega_1$. Since $\lim |m|(Z_n) = |m|(Z) = 0$, there exists n_0 such that $|m|(Z_n) < \epsilon$ if $n \ge n_0$. Now, if $n \ge n_0$, we have

$$|\phi(f_n)| \leq \left| \int_{Z_n} \hat{f}_n \, dm \right| + \left| \int_{Y-Z_n} \hat{f}_n \, dm \right| < \epsilon + \epsilon ||m||.$$

This proves that $\phi(f_n) \to 0$ and hence ϕ is σ -additive. Conversely, assume $\phi \in L_{\sigma}(A)$. Let Z be in Ω_1 and $s \in E$ with $s \ge 0$ and $||s|| \le 1$. Given $\epsilon > 0$ there exists a cozero set V containing Z such that $|m|(V-Z) < \epsilon$. Let $g \in B$, $0 \le g \le 1$, be such that $Z = \hat{g}^{-1}\{0\}$. For each positive integer n, let $V_n = \{x \in Y: \hat{g}(x) < 1/n\} \cap V$. Choose $h_n \in B$, $0 \le h_n \le 1$, $\hat{h}_n = 1$ on Z and $\hat{h} = 0$ on $Y - V_n$. Let $h'_n = h_1 \wedge \cdots \wedge h_n$ and set $f_n = h'_n s$. Then $f_n \downarrow 0$. Hence there exists n such that $|\phi(f_n)| < \epsilon$. But

$$|\phi(f_n)| \ge \left| \int_{Z} \hat{f}_n \, dm \right| - \left| \int_{V-Z} \hat{f}_n \, dm \right|$$

$$\ge |m(Z)s| - |m|(V-Z) \ge |m(Z)s| - \epsilon.$$

Thus $|m(Z)s| \le 2\epsilon$. This proves that m(Z)s = 0. From this it follows that m(Z)s = 0 for each $s \in E$ and all Z in Ω_1 . Now the result follows from the regularity of $ms|_{Ba(Y)}$ and from 4.9.

Theorem 5.5. Let τ be a locally convex Hausdorff topology on A for which the positive cone is normal. Then the following assertions are equivalent:

- (1) $(A, \tau)' \subset L_{\tau}(A)$.
- (2) If $f_{\alpha} \downarrow 0$, then $f_{\alpha} \rightarrow 0$ in the τ -topology.

PROOF. It is clear that (2) implies (1).

(1) \to (2). By Schaefer [10, p. 219], τ is the topology of uniform convergence on the τ -equicontinuous subsets of $(A, \tau)'^+ = \{\phi \in (A, \tau)' : \phi \geqslant 0\}$. Suppose now that $f_{\alpha} \downarrow 0$ and let V be a τ -neighborhood of zero. There exists a τ -equicontinuous subset H of $(A, \tau)'^+$ such that $H^0 \subset V$. The set H is relatively weakly compact. Every f_{α} defines a weakly continuous linear functional on $(A, \tau)'$ by $\phi \to W_{\alpha}(f) = \phi(f_{\alpha})$. If $\phi \in H$, then $W_{\alpha}(\phi) \downarrow 0$. Hence $W_{\alpha} \to 0$ uniformly on H by Dini's theorem. It follows that there exists α_0 such that $f_{\alpha} \in H^0 \subset V$ for all $\alpha \geqslant \alpha_0$. This proves that $f_{\alpha}^{\tau} \to 0$ and the proof is complete.

We have an analogous theorem for $L_{\alpha}(A)$ with a similar proof.

THEOREM 5.6. Let τ be a locally convex Hausdorff topology on A for which the positive cone is normal. The following are equivalent:

- (1) The space $(A, \tau)'$ is contained in $L_{\sigma}(A)$.
- (2) $f_n \downarrow 0$ implies that $f_n \rightarrow 0$ in the τ -topology.

COROLLARY 5.7. (1) $f_n \downarrow 0$ implies that $f_n \rightarrow 0$ in the β_1 -topology.

(2) $f_{\alpha} \downarrow 0$ implies that $f_{\alpha} \rightarrow 0$ in the β -topology.

THEOREM 5.8. Let τ be any one of the topologies β , β_1 , β_F . If W is a τ -neighborhood of zero, then each of the sets $H_1 = \{\phi^+ : \phi \in W^0\}$, $H_2 = \{\phi^- : \phi \in W^0\}$, and $H_3 = \{|\phi| : \phi \in W^0\}$ is τ -equicontinuous, where W^0 is the polar of W in $(A, \tau)'$.

PROOF. Since (A, τ) is locally solid, τ is the topology of uniform convergence on the τ -equicontinuous subsets of $(A, \tau)'^+$. Let W_1 be a solid τ -neighborhood of zero contained in W and let H be a τ -equicontinuous subset of $(A, \tau)'^+$ with $H^0 \subset W_1$. Let $f \in H^0$ and $\phi \in W_1^0 \subset H^{00}$. Since W_1 is solid we have

$$|\phi^+(f)| \le \phi^+(|f|) = \sup \{\phi(h) : 0 \le h \le |f|\} \le 1.$$

Thus $\phi^+ \in H^{00}$. This shows that $H_1 \subset H^{00}$. Similarly H_2 , $H_3 \subset H^{00}$ and the theorem is proved.

Throughout the remaining part of this paper E will be assumed to be a Banach lattice with a unit element e (e has the property that $-e \le s \le e$ iff $||s|| \le 1$).

THEOREM 5.9. (1) Every weakly compact subset of $L_{\sigma}^{+}(A)$ is β_{1} -equicontinuous.

- (2) Every weakly compact subset of $L_{\tau}^{+}(A)$ is β -equicontinuous.
- (3) β is the topology of uniform convergence on the weakly compact subsets of $L_{\tau}^{+}(A)$.
- (4) β_1 is the topology of uniform convergence on the weakly compact subsets of $L_{\sigma}^+(A)$.

PROOF. (1) Let $H \subset L_{\sigma}^+(A)$ be weakly compact. The set H^0 is convex, balanced and absorbent. Let r>0. Set $\alpha=\sup\{\|\phi\|:\phi\in H\}$ and let Z be in Ω_1 . There exists $f\in B$, $0\leqslant f\leqslant 1$, $Z=\hat{f}^{-1}\{0\}$. For each positive integer n, put $Z_n=\{x\in Y:\hat{f}(x)\geqslant 1/n\}$. Choose $g_n\in B$, $0\leqslant g_n\leqslant 1$, $\hat{g}_n=1$ on Z and $\hat{g}_n=0$ on Z_n . Let $h_n=g_1\wedge\cdots\wedge g_n$. Then $h_ne\downarrow 0$ and hence $\phi(h_ne)\downarrow 0$ for each ϕ in H. By Dini's theorem, $\phi(h_ne)\to 0$ uniformly on H. Hence there exists n such that $\phi(h_ne)<1/(2r)$ for all $\phi\in H$. Let $g=1-h_n$ and set $V=\{h\in A:\|gh\|\leqslant 1/(2a)\}$. If $h\in V\cap U_r$, then $h_n|h|\leqslant rh_ne$. Hence for $h\in V\cap U_r$ and $\phi\in H$ we have

$$|\phi(h)| \le \phi(|h|g) + \phi(h_n|h|) \le ||\phi|| \, ||gh|| + r\phi(h_ne) \le a(1/2a) + r(1/2r) = 1.$$

This shows that $V \cap U_r \subset H^0$. Since this happens for all r > 0 and all $Z \in \Omega_1$ we conclude that H^0 is a β_1 -neighborhood of zero.

- (2) Let $Q \in \Omega$. The set $D = \{g \in B : 0 \le g \le 1, \hat{g} = 1 \text{ on } Q\}$ is directed downwards to zero. From here on the proof is similar to that of (1).
- (3) If $H \subset L_{\tau}^+(A)$ is weakly compact, then H^0 is a β -neighborhood of zero by (2). Conversely, let W be a β -neighborhood of zero. Since β is locally solid there exists a β -equicontinuous subset H of $L_{\tau}^+(A)$ such that $H^0 \subset W$. If H_1 is the weak closure of H in $L_{\tau}(A)$, then $H_1 \subset L_{\tau}^+(A)$ and H_1 is weakly compact. Moreover $H_1^0 \subset H^0 \subset W$. This proves (3).
 - (4) The proof is similar to that of (3).

COROLLARY 5.10.
$$\beta = \beta_1$$
 iff $L_{\tau}(A) = L_{\sigma}(A)$.

Using Dini's theorem and the Alaoglu-Bourbaki theorem (see Köthe [14, p. 248]) we can easily show the following

THEOREM 5.11. (1) A subset H of $L_{\tau}^+(A)$ is $\sigma(L_{\tau}(A), A)$ relatively compact iff $\phi(f_{\alpha}) \to 0$ uniformly on H for each net $\{f_{\alpha}\}$ in A that decreases to zero.

(2) A subset H of $L_{\sigma}^{+}(A)$ is $\sigma(L_{\sigma}(A), A)$ relatively compact iff $\phi(f_n) \to 0$ uniformly on H whenever $f_n \downarrow 0$.

COROLLARY 5.12. Let $H \subset L_{\tau}(A)$ $(H \subset L_{\sigma}(A))$. The following are equivalent:

- (1) $\{\phi^+: \phi \in H\}$ and $\{\phi^-: \phi \in H \text{ are both weakly relatively compact in } L_{\tau}(A)$ (in $L_{\sigma}(A)$).
 - (2) $\{|\phi|:\phi\in H\}$ is weakly relatively compact in $L_{\tau}(A)$ (in $L_{\sigma}(A)$).

THEOREM 5.13. The following are equivalent:

- (1) (A, β) is a Mackey space.
- (2) If H is a convex, balanced, weakly compact subset of $L_{\tau}(A)$, then $\{|\phi|:\phi\in H\}$ is weakly relatively compact in $L_{\tau}(A)$.

(3) If H is a convex, balanced, weakly compact subset of $L_{\tau}(A)$, then $\{\phi^+: \phi \in H\}$ and $\{\phi^-: \phi \in H\}$ are both weakly relatively compact in $L_{\tau}(A)$.

PROOF. By 5.12, (2) is equivalent to (3).

- (1) \rightarrow (3). Let H be a weakly compact, convex, balanced subset of $L_{\tau}(A)$. By hypothesis H^0 is a β -neighborhood of zero. By 5.8 the sets $V_1 = \{\phi^+ : \phi \in H^{00}\}$ and $V_2 = \{\phi^- : \phi \in H^{00}\}$ are weakly relatively compact in $L_{\tau}(A)$. Since $H \subset H^{00}$, (3) follows.
- (3) \longrightarrow (1). Let H be a convex balanced weakly compact subset of $L_{\tau}(A)$. By hypothesis and 5.9, the sets $H_1 = \{\phi^+ : \phi \in H\}$ and $H_2 = \{\phi^- : \phi \in H\}$ are β -equicontinuous. Since $H^0 \supset \frac{1}{2}$ $(H_1^0 \cap H_2^0)$, it follows that H is β -equicontinuous. Hence β is finer than the Mackey topology $m(A; L_{\tau}(A))$. Thus $\beta = m(A, L_{\tau}(A))$ since $(A, \beta)' = L_{\tau}(A)$. This completes the proof.

We have an analogous theorem for the pair $\langle A, L_{\sigma}(A) \rangle$ and the topology β_1 . The proof is similar.

BIBLIOGRAPHY

- 1. A. D. Aleksandrov, Additive set functions in abstract spaces, Mat. Sb. 8 (50) (1940), 307-348; ibid. 9 (51) (1941), 563-628. MR 2, 315; 3, 207.
- 2. W. M. Bogdanowicz, Representations of linear continuous functionals on the space C(X, Y) of continuous functions from compact X into locally convex Y, Proc. Japan Acad. 42 (1966), 1122-1127. MR 35 #4365.
- 3. ———, An approach to the theory of integration generated by Daniell functionals and representation of linear continuous functionals, Math. Ann. 173 (1967), 34-52. MR 35 #4364.
- 4. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. MR 21 #4350.
- 5. J. B. Conway, The strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72 (1966), 75-78. MR 32 #4509.
- 6. J. B. Cooper, The strict topology and spaces with mixed topologies, Proc. Amer. Math. Soc. 30 (1971), 583-592. MR 44 #2013.
- 7. N. Dinculeanu, *Vector measures*, Internat. Ser. of Monographs in Pure and Appl. Math., vol. 95, Pergamon Press, Oxford; VEB Deutscher Verlag, Berlin, 1967. MR 34 #6011b.
- 8. I. Dobrakov, On integration in Banach spaces, Czechoslovak. Math. J. (20) 95 (1970), 511-536.
- 9. J. Dorroh, The localization of the strict topology via bounded sets, Proc. Amer. Math. Soc. 20 (1969), 413-414. MR 38 #3721.
- 10. E. Hewitt, Linear functionals on the spaces of continuous functions, Fund. Math. 37 (1950), 161-189. MR 13, 147.
- 11. R. Giles, A generalization of the strict topology, Trans. Amer. Math. Soc. 161 (1971), 467-474. MR 43 #7919.
- 12. A. Katsaras, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313-328.
- 13. R. B. Kirk, Locally compact, B-compact spaces, Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math. 31 (1969), 333-344. MR 41 #9201.
- 14. J. D. Knowles, *Measures on topological spaces*, Proc. London Math. Soc. (3) 17 (1967), 139-156. MR 34 #4441.
- 15. G. Köthe, *Topologische linear Räume*. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math.

- Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
- 16. L. LeCam, Convergence in distribution of stochastic processes, Univ. Calif. Publ. Statist. 2 (1957), 207-236. MR 19, 128.
- 17. E. J. McShane, A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Mem. Amer. Math. Soc. No. 88 (1969). MR 42 #436.
- 18. A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York and London, 1967. MR 37 #3315.
- 19. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689.
- 20. F. D. Sentilles and D. C. Taylor, Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc. 142 (1969), 141-152. MR 40 #703.
- 21. F. D. Sentilles, The strict topology on bounded sets, Pacific J. Math. 34 (1970), 529-540. MR 42 #8283.
- 22. ——, Conditions for equality of the Mackey and strict topologies, Bull. Amer. Math. Soc. 76 (1970), 107-112. MR 40 #7768.
- 23. ———, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 45 #4133.
- 24. V. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 26 #6342.
- 25. J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119-126. MR 31 #593.
- 26. A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68. MR 24 #A3490.

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CAR-BONDALE, ILLINOIS 62901

Current address: Instituto de Mathemática, Universidade de Campinas, Caixa Postal 1170, 13100-Campinas, São Paulo, Brasil